PERGAMON

International Journal of Heat and Mass Transfer 43 (2000) 139-145

International Journal of

HEAT ..« MASS
TRANSFER

www.elsevier.com/locate/ijhmt

Analytical solution for the potential flow through the wall
of n-sided hollow cylinders of regular polygonal cross-
section

Markus Nickolay, Carsten Cramer, Holger Martin*

Thermische Verfahrenstecknik, Universitdt Karlsruhe (TH), D-76128 Karlsruhe, Germany

Received 8 December 1998; received in revised form 25 March 1999

Abstract

The calculation of the potential flow through the wall of hollow cylinders of regular polygonal cross-section with
the inner and the outer boundaries considered to be lines of different but constant potential is a classical problem in
the field of non-viscous transport phenomena. The known empirical correlation’s result from numerical and
experimental investigations and are thus restricted to limited ranges of variables, while a more universal analytic
solution has not yet been published, as far as we know. In this paper we do present such an analytical solution
together with asymptotes and a simple approximation, that does not need higher mathematical functions, for easy

application. © 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

Consider n-sided hollow cylinders of regular polyg-
onal cross-section shown in Fig. 1 (n = 3,..., 6 for
example) with their inner and outer boundaries at con-
stant but different dimensionless potentials ¢. Within
the walls the Laplace-equation

3¢ n ?p
dRe(z)> 0 1Im(z)*
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shall apply. The quantity to be calculated here is the
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amount of potential flow per unit length

- f(e

perpendicular to the isopotential of the isosceles trap-
ezoidal plane domain (see Fig. 2) which is by reason of
symmetry of the basic shape. The answer has direct ap-
plications to calculations of transport phenomena like
heat-flow, inviscid fluid flow and electrical flow.

There are three ways to treat the problem: the exper-
imental, the numerical and the analytical way.
Experimental investigations have been done by
Langmuir [1] in 1913 and by Smith et al. [2] in 1958
from the view of heat transfer for hollow cylinders of
quadratic cross-section (n = 4, o=1/4). Smith also
treated the problem numerically by a relaxation
method, but only made calculations for x=(1/y)=2
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Nomenclature

A non-dimensional length of an isopotential
line

Cy, C; complex numbers

F hypergeometric function

Im(c) imaginary part of the complex number ¢

k modulus in elliptic integral and hypergeo-
metric function

K elliptic integral of the first kind

m co-ordinate perpendicular to an isopoten-
tial boundary

n number of polygon-sides

p geometric parameter in the w-plane

q parameter for the generalised geometric
mean [Eq. (27)]

R resistance of inverse flow R*=y/¥

Re(c)  real part of the complex number ¢

S non-dimensional length of a streamline

t transformed variable

y geometric parameter in the z-plane, ratio

w point in the w-plane, complex number

of the inner to the outer surface
z complex co-ordinate.

Greek symbols
o unit half-circle fraction of the acute angle
of the trapezoid

¢ dimensionless potential

V] dimensionless local flow per unit length

b4 dimensionless integral flow per unit length.
Subscripts

a approximation

c corner section

r rectangular section

0 asymptotic (y — 0).

with two grids of different density. Based on these
results Hahne and Grigull [4] recommended the empiri-
cal correlation
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Fig. 1. Sketch of the problem.

which can also be found in the ‘Wirmeatlas’ [3] and is
regarded to be the ‘state of the art’-solution to this
problem in the field of heat-transfer. From our own
numerical calculations with finite elements and finite
differences and simple analytical deliberations in [5],
we proposed

8

()

which has the advantage of being continuous.
Although (4) fits our numerical calculations with a
relative error better than 0.005 for the computed range
of x = 1/y from 1.01 to 10, it diverges from (3) for y
towards unity. Aware of the fact that experiments and
numerical methods each have their disadvantages and
encouraged by the remark of a reviewer on [5] we tried
to find an analytical solution with the help of confor-
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Fig. 2. Basic domain for calculation.
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Fig. 3. Mapping of the original problem from the z-plane via
the w-plane onto a rectangle in the z’-plane.

mal mapping using Schwarz—Christoffel integrals. In
this paper we present this new solution, which is much
more general than the earlier numerical one (see [5]) by
the introduction of the angle an (see Fig. 2).

2. Analytical solution

The problem described above can be solved if we
are able to map the original problem conformally onto
a rectangle for which the solution of (1) is known.
This is possible by the use of a Schwarz—Christoffel
integral that maps the trapezoid conformally from the
z-plane to the upper half of the w-plane, in a way that
each corner of the trapezoid in the z-plane refers to a
point on the real axis of the w-plane. We then use
another Schwarz—Christoffel integral to map the upper
half of the w-plane back onto a rectangle in the z'-
plane (see Fig. 3).

The implicit mapping-formulae are

" dw
=C + Gy, 5
z 1L (w2 — 1)171(”,2 —pz)“ 2 )

for mapping the trapezoid onto the upper half of the
w-plane and

1.25 2¥(K) = W(1-k)/2
Ea
1
\. €eqn.(18)
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Fig. 4. Flow ¥ vs modulus k.

" dw
2= +Cy, 6
IJo (w2 — 1)1/2(W2 _p2)1/2 2 (6)

for mapping the upper half of the w-plane onto the
rectangle. The constants C;, Ci, C,, C5 are complex
numbers to scale and move the domains within the
planes. The length of the shorter (inner) baseline 2y
(ratio of the inner to the outer surface) of the trap-
ezoid is

00 ,
=20 L (2 — 1)'?:0172 — P @
and for the outer baseline we get

! dw
2=26 Jo (w2 — D)7 w2 — p2y* ®

This yields the following expression for the ratio of the
inner to the outer surface of the tube y

JOO dw

p (W=D —p)*

= [ j— 9
Y ! dw Jo @

Jo (w? — 1)'70((%’2 - pA)*

and it is clear, that neither C; nor C, are of any im-
portance here. As the solution for the flow ¥ through
the rectangle simply is the length of the isopotential
boundaries divided by the length of the streamline
boundaries, a similar procedure gives

Jl dw
w2 — D22 — p2)1/2
0 0F = =P )

p =220
J1 (w2 — )22 —pz)l/2
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Again the constants cancel. Egs. (9) and (10) can be
considered as an analytical solution for the flow in
integral representation.

With the substitution of the parameter p by

= 1/k? (11)

and the help of Maple V Release 5 Eq. (10) can be
solved to give

K(/k)

K(T—F) (12)

wherein K is the complete elliptic integral of the first
kind (see [6], p. 590) and k runs from zero to one. Fig.
4 shows the graph of Eq. (12) together with an asymp-
totic function that will be derived later in the text.

To simplify Eq. (9) we rewrite the integral J, in the
denominator with the substitution

t=w? (13)

and with Eq. (11) we get

k“J dr
Jr=~ 1—a o
2 Joe'2(1 = (1 — k)

R Tr@ 11
s mF(m, Ll k) (14)

wherein F is the hypergeometric function (see [6],
p. 558) and I is the complete gamma function defined
by Gauss (see [7], p. 92).

To simplify J; in the numerator of Eq. (9) we intro-
duce the substitution

2 _ p2
u= i p (]5)

w2 —1

and with Eq. (11) we get the solution

7 kl/zj du
T2 0w = )21 = ku)

fr(l—a)r(l/z) ( 3 )
— e o k).

2 I(3/2-—0) PR (16)

2’ 2

From Eqgs. (14) and (16) the geometric ratio y is found
to be
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Fig. 5. Geometric parameter y vs modulus k.
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In Fig. 5 the graph of Eq. (17) is shown together with
an asymptotic function derived in Eq. (19). The Egs.
(12) and (17) represent a parametric solution in k.
Usually one is only interested in the flow ¥ depending
on the geometric parameters y and a. Therefore Fig. 6
shows a graph of the resistance R*=y/¥ vs y for
different angles. It was calculated with the help of
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Fig. 6. Resistance R™ vs geometric parameter y.
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Maple V Release 5. The choice of plotting R*(y) in
place of ¥(y) has the advantage, that this quantity
remains finite in the whole range 0 < y < 1. For the
same reason we preferred to use the geometric ratio y
in place of x = 1/y, which had been used in the earlier

paper [5].

3. Discussion and conclusion
3.1. Asymptotic functions

For k against zero, y tends to zero. This limit can be
considered as a line-source in the center of a regular
polygonal cylinder. In this case a series evaluation of
(12) and (17) for k towards zero yields

. 2n
I}E’I(l)(ll”(k)) = T ) — (o) (18)
and
, _T(1/2 4 0)k
) = (/2 — @) (19)

if only the first term of the series is considered. From
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Fig. 7. Digits needed for successful computation.

for this becomes clear from Fig. 7. When the geometric
parameter y approaches unity, the connected par-
ameter k in the w-plane is even much closer to unity
and e=—log(1—k) in Fig. 7 is, for ¢>10, in good ap-
proximation the minimum number of digits needed for

these equations

w (1 —=2u)n
0 =
In(1/y) —In (tan(mx) ! _22“ pz(i;ai a)) +2(1 - 22) In(2)

(20)

follows, as an explicit, asymptotic function for the flow
through the trapezoidal domain when y tends to zero.
Graphs of the Egs. (18)—(20) are shown in the Figs.
4-6.

The asymptotic function Eq. (20) fulfils the limiting
case for o towards zero (i.e. n to infinity), when the
trapezoid becomes an infinitesimal part of the circular
tube and the flow is given by

2n
li Yy) = .
Mm(n¥o) = 1575
For k against unity we were not able to derive an
asymptotic function for ¥(y) as the hyper-geometric
function has a singularity in this limit.

(21)

3.2. Approximation

While the analytical solution is exact and easy to
evaluate with the help of sophisticated mathematical
programs for a single value, one may not always have
such tools at hand. To compute a whole series of
values (as necessary in optimisation procedures) it may
still take too long on a personal computer. The reason

successful computation with Maple V Release 5. On
the other hand Eq. (20) only holds for small values of
v in the general case and still needs the Gamma func-
tion. Therefore we tried to derive an approximating
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Fig. 8. Geometric considerations for the approximation.
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function that allows us to perform quick calculations
with a pocket-calculator or a spread-sheet program.
As in [5] we consider the flow to be

A
) — 22
3 (22)

wherein A is the average length of an isopotential line
(or surface per unit length) and S is the length of the
average flow path. For 4 we assume the logarithmic
mean between the length of the inner and the length of
the outer isopotential boundaries

21—y
In(1/y)
as an approximation, which is exact in the limit as n

tends to infinity, while for the average length S of the
flowpath we choose a weighted mean value (see Fig. 8)

Ii:

(23)

S =ySi+(1-pS. (24)
between the height of the rectangular section S,

S = (1 — y) tan(nar) (25)
and a generalised geometric mean for the flow path in

the corner section S,

§o=stogi— !

* = Gin(m)y " (26)

In Eq. (26) the exponent ¢ is found to be
q=1() (27)

a function of the acute angle of the trapezoid and by
comparison with the exact values from Eqgs. (12) and
(17) we get

1

“1—¢ In22) 29

q

wherein the constant ¢ was fitted by minimisation of
the squares of the errors to be

¢ =0.75. (29)

This finally yields

2 cot(ma) 1
T In(1/y) v+ (1= )/ Gin(ra)?
. (30)

1= 12075 In(22)

as a good approximation (see Fig. 6, black dots),
which fulfils the limiting cases including the fact, that
for « towards zero (i.e. n to infinity) the trapezoid
becomes an infinitesimal part of the circular tube and

the flow is given by

2n
_ 31
In(1/y)’ Gh

The geometric parameter y, in this limit, is the inner
diameter of the tube divided by its outer diameter. For
y>0.25 Eq. (26) is in any case within about +1% from
the exact value by Eqgs. (12) and (17) and for n>3 it is
even much better. For y < 0.25 the asymptotic sol-
ution should be used for simple calculation.

3.3. Conclusions

With the analytical solution derived above it is poss-
ible to calculate the potential flow through several
shapes.

The basic geometry in Fig. 2 can be extended by
connecting the identical geometry to a boundary in a
way that the resulting interior boundary remains a
streamline or a line of constant potential. For n-sided
polygonal tube as in Fig. 1 for example, we get:

Y,=n¥Y(y,a), o=1/2—1/n. (32)
The solution even holds if the boundary lines of con-
stant potential and the streamline boundaries are
swapped, if the reciprocal value of the flow is taken.

3.4. Note

In case of heat transfer the boundary condition of
constant wall temperature considered here is fulfilled
for condensing and evaporating processes. In other
cases, like a boundary condition of the third kind, ap-
plication of the solution may still be reasonable if the
wall temperature is only a function of the axial co-
ordinate. This is usually assumed in the case of a circu-
lar tube with fluids flowing through and around the
tube. But this assumption may not be valid for polyg-
onal tubes.

Additionally, in engineering practice it is common to
calculate overall heat transfer coefficients by adding
single resistances. For this method, the resistance of
the wall has to be calculated separately using simple
boundary conditions as given in this paper.
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