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Abstract

The calculation of the potential ¯ow through the wall of hollow cylinders of regular polygonal cross-section with
the inner and the outer boundaries considered to be lines of di�erent but constant potential is a classical problem in
the ®eld of non-viscous transport phenomena. The known empirical correlation's result from numerical and

experimental investigations and are thus restricted to limited ranges of variables, while a more universal analytic
solution has not yet been published, as far as we know. In this paper we do present such an analytical solution
together with asymptotes and a simple approximation, that does not need higher mathematical functions, for easy
application. # 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

Consider n-sided hollow cylinders of regular polyg-
onal cross-section shown in Fig. 1 (n= 3, . . . , 6 for

example) with their inner and outer boundaries at con-
stant but di�erent dimensionless potentials f. Within
the walls the Laplace-equation

@ 2f

@ Re�z�2 �
@ 2f

@ Im�z�2 � 0 �1�

shall apply. The quantity to be calculated here is the

amount of potential ¯ow per unit length

C �
� �

@f
@m

�
dx �2�

perpendicular to the isopotential of the isosceles trap-

ezoidal plane domain (see Fig. 2) which is by reason of
symmetry of the basic shape. The answer has direct ap-
plications to calculations of transport phenomena like
heat-¯ow, inviscid ¯uid ¯ow and electrical ¯ow.

There are three ways to treat the problem: the exper-
imental, the numerical and the analytical way.
Experimental investigations have been done by

Langmuir [1] in 1913 and by Smith et al. [2] in 1958
from the view of heat transfer for hollow cylinders of
quadratic cross-section (n= 4, a=1/4). Smith also

treated the problem numerically by a relaxation
method, but only made calculations for x=(1/y )=2
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with two grids of di�erent density. Based on these

results Hahne and Grigull [4] recommended the empiri-
cal correlation

C�a � 1=4� �8>>><>>>:
2p

0:93 ln�x� ÿ 0:0502
�x � �1=y� > 1:4�

2p
0:785 ln�x� �x � �1=y�<1:4�

�3�

which can also be found in the `WaÈ rmeatlas' [3] and is

regarded to be the `state of the art'-solution to this
problem in the ®eld of heat-transfer. From our own
numerical calculations with ®nite elements and ®nite
di�erences and simple analytical deliberations in [5],

we proposed

C�a � 1=4� � 8�
1� 1ÿ y

4

�
ln

�
1

y

� , �4�

which has the advantage of being continuous.

Although (4) ®ts our numerical calculations with a
relative error better than 0.005 for the computed range
of x= 1/y from 1.01 to 10, it diverges from (3) for y
towards unity. Aware of the fact that experiments and

numerical methods each have their disadvantages and
encouraged by the remark of a reviewer on [5] we tried
to ®nd an analytical solution with the help of confor-

Nomenclature

A non-dimensional length of an isopotential
line

C1, C2 complex numbers

F hypergeometric function
Im(c ) imaginary part of the complex number c
k modulus in elliptic integral and hypergeo-

metric function
K elliptic integral of the ®rst kind
m co-ordinate perpendicular to an isopoten-

tial boundary
n number of polygon-sides
p geometric parameter in the w-plane
q parameter for the generalised geometric

mean [Eq. (27)]
R � resistance of inverse ¯ow R �=y/C
Re(c ) real part of the complex number c

S non-dimensional length of a streamline
t transformed variable

w point in the w-plane, complex number
y geometric parameter in the z-plane, ratio

of the inner to the outer surface

z complex co-ordinate.

Greek symbols
a unit half-circle fraction of the acute angle

of the trapezoid
f dimensionless potential
c dimensionless local ¯ow per unit length
C dimensionless integral ¯ow per unit length.

Subscripts
a approximation
c corner section

r rectangular section
0 asymptotic ( y4 0).

Fig. 1. Sketch of the problem. Fig. 2. Basic domain for calculation.
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mal mapping using Schwarz±Christo�el integrals. In

this paper we present this new solution, which is much
more general than the earlier numerical one (see [5]) by
the introduction of the angle ap (see Fig. 2).

2. Analytical solution

The problem described above can be solved if we
are able to map the original problem conformally onto

a rectangle for which the solution of (1) is known.
This is possible by the use of a Schwarz±Christo�el
integral that maps the trapezoid conformally from the

z-plane to the upper half of the w-plane, in a way that
each corner of the trapezoid in the z-plane refers to a
point on the real axis of the w-plane. We then use

another Schwarz±Christo�el integral to map the upper
half of the w-plane back onto a rectangle in the z '-
plane (see Fig. 3).
The implicit mapping-formulae are

z � C1

�w
0

dw

�w2 ÿ 1�1ÿa�w2 ÿ p2�a � C2, �5�

for mapping the trapezoid onto the upper half of the
w-plane and

z 0 � C 01

�w
0

dw

�w2 ÿ 1�1=2�w2 ÿ p2�1=2 � C 02, �6�

for mapping the upper half of the w-plane onto the
rectangle. The constants C1, C '1, C2, C '2 are complex

numbers to scale and move the domains within the
planes. The length of the shorter (inner) baseline 2y
(ratio of the inner to the outer surface) of the trap-

ezoid is

2y � 2C1

�1
p

dw

�w2 ÿ 1�1ÿa�w2 ÿ p2�a �7�

and for the outer baseline we get

2 � 2C1

�1
0

dw

�w2 ÿ 1�1ÿa�w2 ÿ p2�a : �8�

This yields the following expression for the ratio of the
inner to the outer surface of the tube y

y �

�1
p

dw

�w2 ÿ 1�1ÿa�w2 ÿ p2�a�1
0

dw

�w2 ÿ 1�1ÿa�w2 ÿ p2�a
� J1

J2
�9�

and it is clear, that neither C1 nor C2 are of any im-
portance here. As the solution for the ¯ow C through
the rectangle simply is the length of the isopotential

boundaries divided by the length of the streamline
boundaries, a similar procedure gives

C � 2

�1
0

dw

�w2 ÿ 1�1=2�w2 ÿ p2�1=2� p

1

dw

�w2 ÿ 1�1=2�w2 ÿ p2�1=2
: �10�

Fig. 3. Mapping of the original problem from the z-plane via

the w-plane onto a rectangle in the z '-plane.

Fig. 4. Flow C vs modulus k.
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Again the constants cancel. Eqs. (9) and (10) can be
considered as an analytical solution for the ¯ow in

integral representation.
With the substitution of the parameter p by

p � 1=k2 �11�

and the help of Maple V Release 5 Eq. (10) can be
solved to give

C � 2
K� ���

k
p �

K� �����������
1ÿ k
p � �12�

wherein K is the complete elliptic integral of the ®rst
kind (see [6], p. 590) and k runs from zero to one. Fig.

4 shows the graph of Eq. (12) together with an asymp-
totic function that will be derived later in the text.
To simplify Eq. (9) we rewrite the integral J2 in the

denominator with the substitution

t � w2 �13�

and with Eq. (11) we get

J2 � ka

2

�1
0

dt

t1=2�1ÿ t�1ÿa�1ÿ kt�a

� ka

2

G�1=2�G�a�
G�1=2� a�F

�
a,

1

2
,
1

2
� a, k

�
�14�

wherein F is the hypergeometric function (see [6],
p. 558) and G is the complete gamma function de®ned

by Gauss (see [7], p. 92).
To simplify J1 in the numerator of Eq. (9) we intro-

duce the substitution

u � w2 ÿ p2

w2 ÿ 1
�15�

and with Eq. (11) we get the solution

J1 � k1=2

2

�1
0

du

ua�1ÿ u�1=2�1ÿ ku�1=2

�
���
k
p

2

G�1ÿ a�G�1=2�
G�3=2ÿ a� F

�
1

2
, 1ÿ a,

3

2
ÿ a, k

�
: �16�

From Eqs. (14) and (16) the geometric ratio y is found
to be

y � cot�pa�
1=2ÿ a

G2�1=2� a�
G2�a� k�1=2�ÿa

�
F

�
1

2
, 1ÿ a,

3

2
ÿ a, k

�
F

�
a,

1

2
,
1

2
� a, k

� : �17�

In Fig. 5 the graph of Eq. (17) is shown together with
an asymptotic function derived in Eq. (19). The Eqs.
(12) and (17) represent a parametric solution in k.

Usually one is only interested in the ¯ow C depending
on the geometric parameters y and a. Therefore Fig. 6
shows a graph of the resistance R �=y/C vs y for

di�erent angles. It was calculated with the help of

Fig. 5. Geometric parameter y vs modulus k.

Fig. 6. Resistance R � vs geometric parameter y.
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Maple V Release 5. The choice of plotting R �( y ) in
place of C( y ) has the advantage, that this quantity

remains ®nite in the whole range 0 R y R 1. For the
same reason we preferred to use the geometric ratio y
in place of x = 1/y, which had been used in the earlier

paper [5].

3. Discussion and conclusion

3.1. Asymptotic functions

For k against zero, y tends to zero. This limit can be
considered as a line-source in the center of a regular
polygonal cylinder. In this case a series evaluation of

(12) and (17) for k towards zero yields

lim
k40
�C�k�� � 2p

4 ln�2� ÿ ln�k� �18�

and

lim
k40
� y�k�� � G�1=2� a�2k1=2ÿa

tan�pa��1=2ÿ a�G2�a� �19�

if only the ®rst term of the series is considered. From

these equations

C0 � �1ÿ 2a�p

ln�1=y� ÿ ln

 
tan�pa�1ÿ 2a

2

G2�a�
G2�1=2� a�

!
� 2�1ÿ 2a� ln�2�

follows, as an explicit, asymptotic function for the ¯ow

through the trapezoidal domain when y tends to zero.
Graphs of the Eqs. (18)±(20) are shown in the Figs.
4±6.

The asymptotic function Eq. (20) ful®ls the limiting
case for a towards zero (i.e. n to in®nity), when the
trapezoid becomes an in®nitesimal part of the circular
tube and the ¯ow is given by

lim
n41�nC0� � 2p

ln�1=y� : �21�

For k against unity we were not able to derive an
asymptotic function for C( y ) as the hyper-geometric
function has a singularity in this limit.

3.2. Approximation

While the analytical solution is exact and easy to

evaluate with the help of sophisticated mathematical
programs for a single value, one may not always have
such tools at hand. To compute a whole series of

values (as necessary in optimisation procedures) it may
still take too long on a personal computer. The reason

for this becomes clear from Fig. 7. When the geometric

parameter y approaches unity, the connected par-
ameter k in the w-plane is even much closer to unity
and E=ÿlog(1ÿk ) in Fig. 7 is, for E>10, in good ap-

proximation the minimum number of digits needed for

successful computation with Maple V Release 5. On
the other hand Eq. (20) only holds for small values of

y in the general case and still needs the Gamma func-
tion. Therefore we tried to derive an approximating

Fig. 7. Digits needed for successful computation.

Fig. 8. Geometric considerations for the approximation.

(20)
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function that allows us to perform quick calculations
with a pocket-calculator or a spread-sheet program.

As in [5] we consider the ¯ow to be

C �
�A

�S
, �22�

wherein A is the average length of an isopotential line

(or surface per unit length) and S is the length of the
average ¯ow path. For A we assume the logarithmic
mean between the length of the inner and the length of

the outer isopotential boundaries

�A � 2�1ÿ y�
ln�1=y� �23�

as an approximation, which is exact in the limit as n

tends to in®nity, while for the average length S of the
¯owpath we choose a weighted mean value (see Fig. 8)

�S � ySr � �1ÿ y� �S c �24�

between the height of the rectangular section Sr

Sr � �1ÿ y� tan�pa� �25�

and a generalised geometric mean for the ¯ow path in
the corner section Sc

�S c � S �1ÿq�c Sq
r �

1

�sin�pa��q Sr: �26�

In Eq. (26) the exponent q is found to be

q � f �a� �27�

a function of the acute angle of the trapezoid and by
comparison with the exact values from Eqs. (12) and
(17) we get

q � 1

1ÿ c ln�2a� �28�

wherein the constant c was ®tted by minimisation of
the squares of the errors to be

c � 0:75: �29�

This ®nally yields

Ca � 2 cot�pa�
ln�1=y�

1

y� �1ÿ y�=�sin�pa��q ,

q � 1

1ÿ 0:75 ln�2a�

�30�

as a good approximation (see Fig. 6, black dots),

which ful®ls the limiting cases including the fact, that
for a towards zero (i.e. n to in®nity) the trapezoid
becomes an in®nitesimal part of the circular tube and

the ¯ow is given by

lim
n41�nC� � lim

n41�nCa� � 2 lim�n cot�pa��
ln�1=y�

� 2p
ln�1=y� ,

a � 1

2
ÿ 1

n
:

�31�

The geometric parameter y, in this limit, is the inner
diameter of the tube divided by its outer diameter. For

y>0.25 Eq. (26) is in any case within about21% from
the exact value by Eqs. (12) and (17) and for n>3 it is
even much better. For y < 0.25 the asymptotic sol-

ution should be used for simple calculation.

3.3. Conclusions

With the analytical solution derived above it is poss-
ible to calculate the potential ¯ow through several
shapes.

The basic geometry in Fig. 2 can be extended by
connecting the identical geometry to a boundary in a
way that the resulting interior boundary remains a

streamline or a line of constant potential. For n-sided
polygonal tube as in Fig. 1 for example, we get:

Cn � nC� y, a�, a � 1=2ÿ 1=n: �32�
The solution even holds if the boundary lines of con-
stant potential and the streamline boundaries are
swapped, if the reciprocal value of the ¯ow is taken.

3.4. Note

In case of heat transfer the boundary condition of
constant wall temperature considered here is ful®lled
for condensing and evaporating processes. In other
cases, like a boundary condition of the third kind, ap-

plication of the solution may still be reasonable if the
wall temperature is only a function of the axial co-
ordinate. This is usually assumed in the case of a circu-

lar tube with ¯uids ¯owing through and around the
tube. But this assumption may not be valid for polyg-
onal tubes.

Additionally, in engineering practice it is common to
calculate overall heat transfer coe�cients by adding
single resistances. For this method, the resistance of

the wall has to be calculated separately using simple
boundary conditions as given in this paper.
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